

Haolun Wu^{*}, Ye Yuan^{*}, Liana Mikaelyan, Alexander Meulemans[†], Xue Liu, James Hensman, Bhaskar Mitra

Microsoft ETHzürich

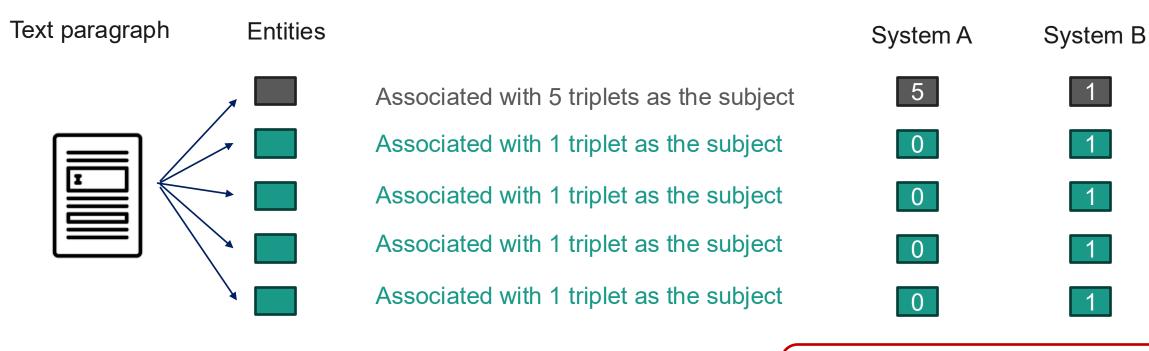
*Equal contribution with random order; [†]Work done during an internship at Microsoft Research.

Background: Information Extraction

- Information extraction refers to a broad family of tasks that aim to extract structured information from unstructured text.
- Previous formulations of information extraction have predominantly centered around the extraction of *<subject, relation, object>* triplets.

...

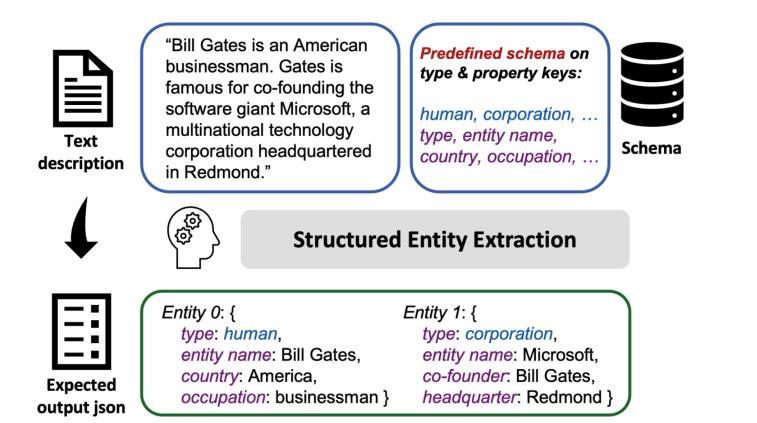
"Bill Gates is an American businessman Gates is famous for co-founding the software giant Microsoft, a multinational technology corporation headquartered in Redmond."

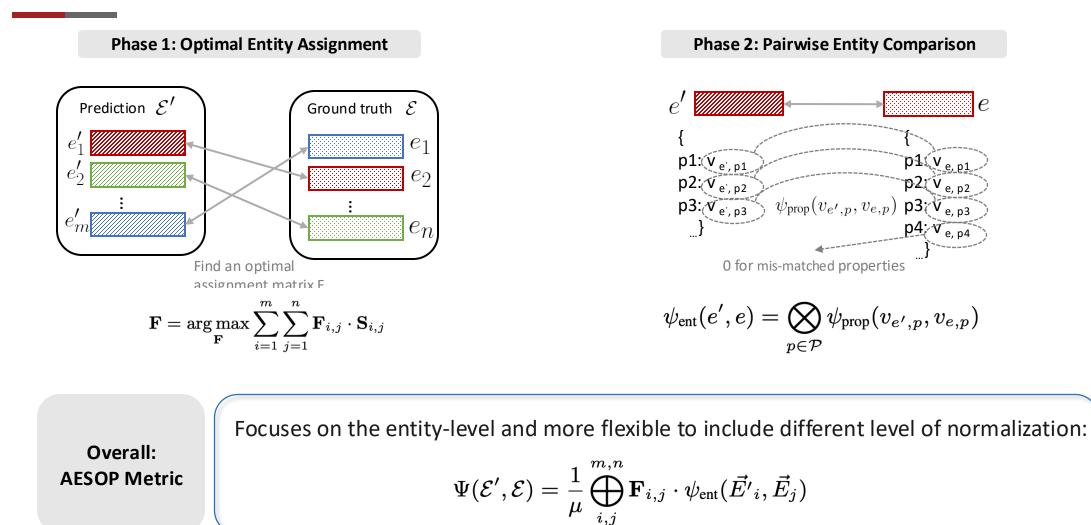


<Bill Gates, is, American Businessman> <Gates, co-founding, Microsoft>

<tech corporation, headquartered in, Redmon>

• The evaluations leverage conventional metrics, such as **precision**, **recall**, and **F1** scores.


Limitation & Motivation

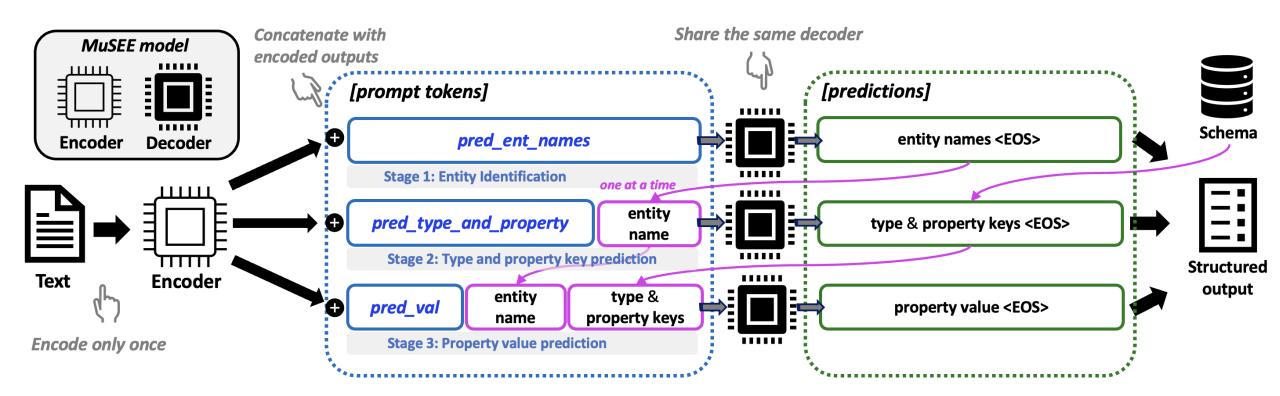

The precision and recall are the same, but the text comprehension is very different.

Structured Entity Extraction

• To facilitate diverse evaluations and provide more holistic perspectives, we propose Structured Entity Extraction (SEE), an **entity-centric** formulation of information extraction.

Approximate Entity Set OverlaP (AESOP) Metric

Experiments

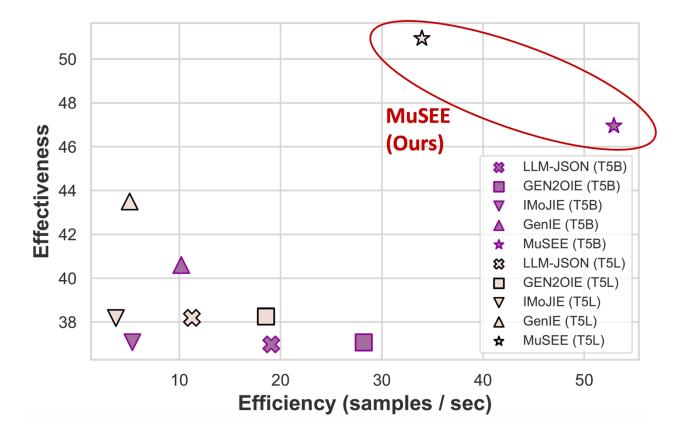

• Datasets:

- Repurpose the **NYT**, **CoNLL04**, and **REBEL** datasets.
- Introduce **Wikidata-based**, crafted using an approach similar to REBEL but with two primary distinctions: (i) property values are not necessarily entities; (ii) simplify the entity types by consolidating them into broader categories based on the Wikidata taxonomy graph.

• Baselines:

- **LM-JSON**: fine-tune a pre-trained language model to generate JSON directly.
- Repurpose **GEN2OIE**, **IMoJIE**, and **GenIE** to structured entity extraction task.
- All methods utilize **T5**-Base and T5-Large as the backbone models.

Multi-stage Structured Entity Extraction Model (MuSEE)


Experiments – Effectiveness Comparison

Model	REBEL				NYT				CoNLL04				Wikidata-based			
	AESOP	Precision	Recall	F1	AESOP	Precision	Recall	F1	AESOP	Precision	Recall	F1	AESOP	Precision	Recall	F1
LM-JSON (T5-B)	41.91	38.33	51.29	43.87	66.33	73.10	52.66	61.22	68.80	61.63	48.04	53.99	36.98	43.95	29.82	35.53
GEN2OIE (T5-B)	44.52	35.23	40.28	37.56	67.04	72.08	53.02	61.14	68.39	62.35	42.20	50.26	37.07	40.87	28.37	33.55
IMoJIE (T5-B)	46.11	34.10	<u>48.61</u>	40.08	63.86	72.28	48.99	58.40	63.68	52.00	42.62	46.85	37.08	41.61	28.23	33.64
GenIE (T5-B)	<u>48.82</u> *	57.55	38.70	<u>46.28</u> *	<u>79.41</u> *	<u>87.68</u>	73.24	79.81	<u>74.74</u> *	<u>72.49</u> *	<u>59.39</u>	<u>65.29</u>	<u>40.60</u> *	<u>50.27</u> *	29.75	<u>37.38</u>
MuSEE (T5-B)	55.24	<u>56.93</u>	42.31	48.54	81.33	88.29	<u>72.21</u>	<u>79.44</u>	78.38	73.18	60.28	66.01	46.95	53.27	<u>29.33</u>	37.99
LM-JSON (T5-L)	45.92	39.49	40.82	40.14	67.73	73.38	53.22	61.69	68.88	61.50	47.77	53.77	38.19	43.24	31.63	36.54
GEN2OIE (T5-L)	46.70	37.28	41.12	39.09	68.27	73.97	53.32	61.88	68.52	62.76	43.31	51.16	38.25	41.23	28.54	33.77
IMoJIE (T5-L)	48.13	38.55	49.73	43.43	65.72	73.46	50.03	59.52	67.31	53.00	43.44	47.75	38.18	41.74	30.10	34.98
GenIE (T5-L)	<u>50.06</u> *	58.00	42.56	49.09	<u>79.64</u> *	<u>84.82</u> *	75.69	80.00	<u>72.92</u> *	77.75	<u>55.64</u> *	<u>64.86</u>	<u>43.50</u> *	54.05	<u>30.98</u>	39.38
MuSEE (T5-L)	57.39	<u>57.11</u>	<u>42.89</u>	<u>48.96</u>	82.67	89.43	<u>73.32</u>	80.60	79.8 7	<u>74.89</u>	60.72	67.08	50.94	<u>53.72</u>	31.12	<u>39.24</u>

- Our MuSEE model consistently outperforms other baselines in terms of AESOP metric across all datasets.
- It does not invariably surpass the baselines across all the traditional metrics of precision, recall, and F1 score.

Experiments – Efficiency Comparison

- We choose the Wikidata-based dataset to illustrate.
- The effectiveness is measured by AESOP metric.
- MuSEE is generally more effective and efficient than baselines.

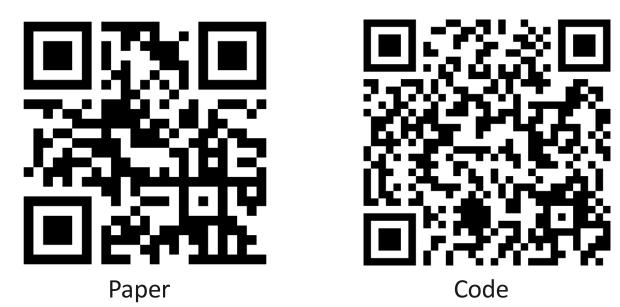
Experiments

- We randomly select 400 test passages from the Wikidata-based dataset, and generate outputs of our model MuSEE and the strongest baseline GenIE.
- Human evaluators are presented with a passage and two randomly flipped extracted sets of entities with properties.
- Evaluators are then prompted to choose the output they prefer or express no preference based on three criteria, *Completeness*, *Correctness*, and *(no) Hallucinations*.

	Huma	an Evaluati	on	Quantitative Metrics					
	Complete.	Correct.	Halluc.	AESOP	Precision	Recall	F1		
MuSEE prefer	61.75	59.32	57.13	61.28	45.33	37.24	40.57		

Conclusion & Future Work

• Contribution:


- An **entity-centric** formulation of the information extraction task.
- An evaluation metric, **Approximate Entity Set OverlaP (AESOP)**, with more flexibility tailored for assessing structured entity extraction.
- A new model leveraging the capabilities of LMs, improving the effectiveness and efficiency for structured entity extraction.

• Future Work:

 Consider scenarios where a property's value might consist of a set, such as varying "names". Adapting our method to accommodate these scenarios presents a promising research direction.

Thanks for your attention!

